Comparison of spectroscopy technologies for improved monitoring of cell culture processes in miniature bioreactors
نویسندگان
چکیده
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large-scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D-fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design-of-experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D-fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L-1 ) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L-1 , respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D-fluorescence. The implementation of Raman spectroscopy increases at-line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337-346, 2017.
منابع مشابه
Technological progresses in monoclonal antibody production systems.
Monoclonal antibodies (mAbs) have become vitally important to modern medicine and are currently one of the major biopharmaceutical products in development. However, the high clinical dose requirements of mAbs demand a greater biomanufacturing capacity, leading to the development of new technologies for their large-scale production, with mammalian cell culture dominating the scenario. Although s...
متن کاملIn-situ cell density monitoring and apoptosis detection in adherent Vero cell bioreactor cultures
Background In cell-based processes, and particularly in viral vaccine production, cell growth and death are strategic informations to obtain for process monitoring (ie. scale-up, determination of MOI, TOI, and harvest time). Dielectric spectroscopy is a tool which was increasingly implemented on cell-culture bioreactors as it presents great potentials, compared to other methods, for the in-line...
متن کاملA Scalable Perfusion Culture System with Miniature Peristaltic Pumps for Live-Cell Imaging Assays with Provision for Microfabricated Scaffolds
We present a perfusion culture system with miniature bioreactors and peristaltic pumps. The bioreactors are designed for perfusion, live-cell imaging studies, easy incorporation of microfabricated scaffolds, and convenience of operation in standard cell culture techniques. By combining with miniature peristaltic pumps-one for each bioreactor to avoid cross-contamination and to maintain desired ...
متن کاملMammalian cell retention devices for stirred perfusion bioreactors.
Within the spectrum of current applications for cell culture technologies, efficient large-scale mammalian cell production processes are typically carried out in stirred fed-batch or perfusion bioreactors. The specific aspects of each individual process that can be considered when determining the method of choice are presented. A major challenge for perfusion reactor design and operation is the...
متن کاملInsights into monitoring changes in the viable cell density and cell physiology using scanning, multi-frequency dielectric spectroscopy
Background Real-time bioprocess monitoring is fundamental for maximizing yield, improving efficiency and process reproducibility, minimizing costs, optimizing product quality, and full understanding of how a system works. The FDA’s Process Analytical Technology initiative (PAT) encourages bioprocess workflows to operate under systems that provide timely, in-process results. At the same time the...
متن کامل